

Upper Hudson River Sedtran Model Topic 3: Model Structure → **Current Model**

December 7, 2010

Bed Shear Stress: Skin Friction

$$\tau_{sf} = \rho_w C_f u^2$$

$$C_f = \kappa^2 \ln^{-2}(11 z_{ref}/k_s)$$

$$k_s = 2D_{90}$$

- ρ_w = water density
- C_f = bottom friction coefficient
- u = near-bed velocity
- z_{ref} = reference height above bed (h, water depth)
- k_s = effective bed roughness

Deposition Flux: Size Class k

$$D_k = P_{dep,k} W_{s,k} C_k$$

- $P_{dep,k}$ = probability of deposition for size class k
- W_{s,k} = settling speed for size class k
- C_k = near-bed concentration for size class k
- D_k has units of g/cm²-s

Probability of Deposition: Cohesive Class

Probability of Deposition: Non-Cohesive Classes

Settling Speed: Cohesive Class

Settling Speed: Non-Cohesive Classes

Cohesive Bed Erosion: Lick Equation

$$\mathcal{E} = \frac{a_{\mathrm{o}}}{T_d^n} \left(\frac{\tau - \tau_{cr}}{\tau_{cr}} \right)^n, \ \tau > \tau_{cr}$$

- $-\varepsilon$ = resuspension potential (g/cm²)
- T_d = time after deposition
- $-\tau_{cr}$ = critical shear stress
- a_0 = site-specific coefficient

Cohesive Bed Model

 E_k D_k

 $T_d = 1$ to 6 days

 $T_d = 7$ days or greater

Composition spatially & temporally variable f_1 , f_2 , f_3 , f_4

Non-Cohesive Bed Erosion

 Suspended load erosion from the noncohesive bed is simulated using the van Rijn algorithm

Bed model simulates the effects of bed armoring

Non-Cohesive Bed Erosion: Erosion Rate of Size Class k

$$E_k = f_{AS,k} S_k P_{sus,k} E_{na,k}$$

- f_{AS,k} = content of class k in active-surface layer
- S_k = particle-shielding factor for class k
- P_{sus,k} = probability of suspension for class k
- $E_{na,k}$ = erosion rate for non-armoring bed, class k

Non-Cohesive Bed Erosion: Probability of Suspension, Size Class k

$$\begin{split} P_{sus,k} &= 0 \quad \text{ for } \tau_{sf} \leq \tau_{c,k} \\ &= [\ln(\beta_1) - \ln(\beta_2)]/[1.39 - \ln(\beta_2)] \quad \text{ for } \tau_{sf} \geq \tau \text{ and } \beta_1 \leq 4 \\ &= 1 \quad \text{ for } \beta_1 > 4 \end{split}$$

- β₁, β₂ depend on u_{*} (shear velocity) and W_{s,k} (settling speed, class k)
- Settling speed of sands are related to effective particle diameter (d_k)
- P_{sus} for class 1 (clay/silt) is equal to one

Non-Cohesive Bed Erosion: Probability of Suspension, Size Class k

Probability of suspension as a function of bed shear stress and particle diameter.

Non-Cohesive Bed Erosion: Particle-Shielding Factor, Size Class k

$$S_k = (d_k/d_m)^{0.85} \quad \text{for } d_k \le d_m$$

$$= 1 \quad \text{for } d_k > d_m$$

- d_k = effective particle diameter, size class k
- d_{50} = median diameter in parent-bed layer

Non-Cohesive Bed Erosion: Particle-Shielding Factor, Size Class k

$$D_{tot} = \Sigma D_k$$

Schematic of interactions between the water column, active layer, and parent-bed layer when the active-buffer layer is present.

